Archivo de la etiqueta: residuos

UN MICROONDAS EXPERIMENTAL RESCATA EL PIGMENTO ROJIZO DEL VINO TINTO DE LAS LÍAS

Fuente: Gabinete de Comunicación de la UVa

Las lías son sedimientos sólidos que quedan después de la fermentación del vino. Compuesto sobre todo por restos de levaduras, suponen un residuo para las empresas bodegueras y también una oportunidad para la obtención de compuestos de interés comercial.

Un procedimiento experimental con microondas, desarrollado por la Universidad de Valladolid (UVa) y en colaboración con el Instituto de Biologia Experimental e Tecnológica de la Universidade Nova de Lisboa, permite mejorar y optimizar la extracción de un pigmento con un valor antioxidante muy interesante para las industrias cosméticas o alimentaria.

Se estima que en torno al 14% de todos los residuos generados a la hora de producir vino son lías.

En España supone entre 280 000 y 420 000 kilos de este residuo al año. Hasta ahora, este material orgánico terminaba en un punto de reciclaje generalmente, pero su destino podría cambiar en adelante a través de un proceso similar al de prepararse una infusión para desayunar cada mañana.

Por medio de un microondas experimental y un posterior agitado, el equipo investigador del grupo de Procesos a Altas Presiones del Departamento de Ingeniería Química y Tecnología del Medio Ambiente de la UVa ha podido extraer en una cantidad significativamente mayor a otros procedimientos unos compuestos denominados antocianinas.

Son pigmentos que colorean ciertas plantas o los alimentos derivados de ellas. El violeta de la col lombarda o las tonalidades rojizas del vino tinto son cosa suya.

Además, tienen propiedades antioxidantes, de interés para ciertos productos alimentarios. Resultados de este trabajo, que forma parte de la tesis doctoral de Rut Romero, han sido publicados recientemente en la revista Food Chemistry.

Ultrasonidos y microondas
El equipo científico buscó la manera para extraer de una manera eficiente este compuesto, que presenta efectos potencialmente beneficiosos para la salud humana por sus propiedades antioxidantes.

Para ello probaron dos técnicas para mejorar los resultados de la extracción convencional, los ultrasonidos y las microondas.

La investigación se centró en dos tipos de vino, tintos de la Ribera del Duero y fortificados de Oporto (Portugal). Los posos fueron previamente liofilizados, un sistema de secado por el que se sublima el agua y queda un tipo de polvo.

Como si se preparara un té en bolsa en una cocina convencional, se introdujo el compuesto en el microondas experimental durante apenas 90 segundos y seguido de procedimiento de agitación se extrajeron los compuestos.

“No es común el uso de microondas en procesos de extracción de polifenoles o antioxidantes”, precisa Soraya Rodríguez Rojo, codirectora de la tesis doctoral y coordinadora del estudio.

En esta investigación, “incluso hemos encontrado un compuesto antioxidante más complejo e interesante”, detalla Rut Romero, que defiende su tesis doctoral el 13 de diciembre de 2018.

La identificación de estos compuestos ha sido posible mediante un equipo de cromatografía de masas gracias a la colaboración en el proyecto del iBET, de Portugal, al que pertence Ana Matias, codirectora también de la tesis.

El prototipo crece
El grupo, dirigido por la catedrática María José Cocero y perteneciente al recientemente creado Instituto de Bioeconomía de la Universidad de Valladolid, tiene experiencia en la extracción de compuestos polifenólicos de interés comercial, para los sectores cosmético o alimentario a partir de residuos agroindustriales como los vitivinícolas u oleícolas.

Esto es, a partir de hollejos y raspones de los racimos de las uvas o del alpeorujo, el resto que queda después de extraer el aceite de oliva virgen.

Visto el potencial del prototipo, el grupo de Procesos a Alta Presión ha desarrollado una planta piloto para escalar a la industria este nuevo procedimiento.

Este equipo innovador se ha creado gracias a la colaboración entre los profesores Rafael Mato y Juan Monzo, de las universidades de Valladolid y Politécnica de Cartagena respectivamente.

Bibliografía:
R. Romero-Díez, M. Matos, L. Rodrigues, Maria R. Bronze, S. Rodríguez-Rojo, M.J. Cocero, A.A. Matias. ‘Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different lees wines’. Food Chemistry 272 (2019) 258-266. https:/doi.org/10.1016/j.foodchem.2018.08.016

LA UVa EMPLEA QUÍMICA Y ELECTRICIDAD PARA MEJORAR LA DEPURACIÓN DE METALES PESADOS EN EL AGUA

Fuente: Unidad de Cultura Científica/Gabinete de Comunicación 

Los metales pesados constituyen uno de los grupos de contaminantes ambientales de mayor preocupación. La presencia de plomo, cadmio o cromo en el agua produce grandes daños ambientales, y a través de la cadena trófica acaban siendo asimilados por el ser humano.

Por ello, actividades industriales como la de producción de energía, la minería o de combustibles fósiles tratan de minimizar el impacto ambiental con sistemas de depuración de sus aguas residuales. Un sistema para la eliminación de residuos es el filtrado con membranas.

Un equipo de investigación de la Universidad de Valladolid ha logrado implementar una tecnología para conocer la carga eléctrica de estas membranas, que, en último término, permitirá mejorar su capacidad de retener contaminantes en un futuro.

La tecnología se denomina espectroscopia de impedancia. Se basa en conceptos de química y electricidad. La impedancia es un término técnico que hace referencia a la dificultad de que la corriente eléctrica transite por un conductor, una forma de resistencia.

Sucede, por ejemplo, en cualquier aislante que protege un cable común de cualquier aparato que funcione por la electricidad.
Un tipo de membrana empleada en el sistema de depuración de aguas residuales de origen industrial tiene una carga eléctrica. Por este sistema, se atraen los iones disueltos en el agua de metales pesados, impidiendo su paso a los cauces naturales.

“Las membranas cargadas son más eficientes que otras técnicas de limpieza y la electroscopia ayuda a conocer el grado de éxito de este filtro”, relata el catedrático Pedro Prádanos, del Grupo de Superficies y Materiales Porosos (SMAP), unidad de la Universidad de Valladolid asociada al Consejo Superior de Investigaciones Científicas (CSIC) a través del Instituto de Ciencia y Tecnología de Polímeros de Madrid.

En un trabajo de investigación recientemente publicado en la revista científica Chemical Engineering Science, la UVa, junto a las universidades de Extremadura y Nacional de San Luis (Argentina), ha determinado la carga eléctrica neta de membranas con capacidad de filtrado a escala micrométrica.

Para ello, han empleado un microscopio de fuerza atómica, un dispositivo muy sofisticado capaz de detectar fuerzas del órden de nanonewtons y de representar en una pantalla los átomos de carbono de una lámina de grafito, por ejemplo. Con este instrumental, por primera vez se ha podido medir la capacidad de retención de iones de estas membranas.

Cambio de escala
El desarrollo de la nanociencia está llevando a la industria nuevos y prometedores materiales. En la escala nanométrica, la materia cambia de propiedades. Nanopartículas de oro, por ejemplo, no son doradas, sino verdes.

Esta modificación del comportamiento ha traído avances espectaculares en robótica, telecomunicaciones o medicina. También ha llegado a las membranas para el filtrado de aguas residuales.

En el mercado ya existen nanomateriales para el cribado de metales pesados para evitar su expulsión a las corrientes naturales. El personal del Departamento de Física Aplicada, sin embargo, ha propuesto regresar a la escala de micrómetro, de un orden mil veces más grande que la del nanómetro.

La razón es la eficiencia. “Nos permite procesar más litros de líquido con la misma cantidad de energía”, explica Prádanos. No obstante, en la industria el uso de membranas para microfiltración todavía es inferior al de nanofiltración.

El grupo SMAP está reconocido por la Junta de Castilla y León como unidad de investigación consolidada, un distintivo para los grupos de investigación de la comunidad autónoma que cuenta con un mayor nivel de calidad y de producción científica.

Además del desarrollo de tecnologías para la mejora de membranas de filtrado de aguas residuales, tiene aplicaciones en otros campos, como el de sistemas para separar gases de efecto invernadero.

Darío Ramón Díaz, Francisco Javier Carmona, Laura Palacio, Nelio Ariel Ochoa, Antonio Hernández, Pedro Prádanos. ‘Impedance spectroscopy and membrane potential analysis of microfiltration membranes. The influence of Surface fractality’. Chemical Engineering Science 178 (2018) 27-38. DOI: https//doi.org/10.1016/j.ces.2017.12.027

DE PULPA DE REMOLACHA A COSMÉTICO: UN INVESTIGADOR DE LA UVa CREA UNA BIOREFINERÍA PARA VALORIZAR RESIDUOS DE LA INDUSTRIA AZUCARERA

Fuente: Innnovadores-Diario de Valladolid-El mundo

Los desechos tienen derecho a vivir una segunda oportunidad. Y más en tiempos de crisis. Agudizar el ingenio y buscar esa salida que, además de revalorizar el producto, sea sostenible es una necesidad.

Eso es lo que ha hecho el investigador de la Universidad de Valladolid (UVA) Alberto Romero, que ha creado Cathycel, una biorefinería para valorizar residuos de la industria azucarera.

En concreto propone aprovechar la pulpa de remolacha y convertirla en sorbitol, un producto interesante para la industria cosmética, farmacéutica y alimentaria, además de ser un edulcorante de bajo poder calórico.

Leer más