Archivo de la etiqueta: nanopartículas

LA UVA ESTUDIA EL ALMACENAMIENTO DE HIDRÓGENO PARA LOS COCHES DEL FUTURO

Fuente: Gabinete de Comunicación de la UVa

El Grupo de Física de Nanoestructuras de la Universidad de Valladolid (UVa) se dedica al estudio de materiales que puedan servir para almacenar hidrógeno, pensando principalmente en sustituir en un futuro a los vehículos que en la actualidad consumen gasolina o gasóleo por otros eléctricos que funcionen mediante pilas de hidrógeno.

Los cálculos por ordenador que llevan a cabo resultan esenciales para avanzar en esta línea de investigación, que espera ofrecer una alternativa sólida para el transporte del futuro.

El material que se busca sería “equivalente a una esponja”, explica el catedrático Julio Alfonso Alonso, “que es capaz de almacenar agua gracias a que tiene poros y pequeñas cavidades, lo que permite que entre el líquido y quede retenido”. En este caso, el objetivo es atrapar hidrógeno, que sería liberado mediante un aumento de la temperatura.

Sin embargo, no se trata de quemar hidrógeno como combustible, sino de emplearlo como parte del sistema de un vehículo eléctrico.

La generación de electricidad se conseguiría mediante un proceso químico, al lograr una reacción del hidrógeno en contacto con el oxígeno.

Básicamente, el hidrógeno se oxida y los electrones que pierde se transforman en corriente eléctrica para las pilas que moverán los motores eléctricos.

El único residuo de esa reacción es el vapor de agua, de manera que este método sería inocuo para el medio ambiente, logrando una propulsión sin emisiones contaminantes.

Hasta ahora el único sistema de características similares emplea bombonas de hidrógeno, pero genera muchas dudas, así que numerosas investigaciones teóricas y experimentales buscan mejorar el método.

Desde el punto de vista de la simulación teórica, los científicos de la UVa calculan las características del material poroso que buscan.

“Hoy en día las simulaciones por ordenador son tan sofisticadas que casi equivalen a un experimento de laboratorio, con sus procesos físicos y químicos”, comenta el coordinador del Grupo de Física de Nanoestructuras.

Los científicos tienen que analizar cómo sería la interacción del hidrógeno y el material que debe contenerlo, así como la forma de liberarlo posteriormente para generar la corriente eléctrica que movería el coche.

Los científicos trabajan con muchas propuestas, pero aún no han dado con el material definitivo. El Grupo de Física de Nanoestructuras se centra en los carbones porosos, que parecen tener todas las características de “esponja” que serían necesarias. En general, estos materiales de carbono tienen una estructura desordenada, con redes de poros y túneles interiores que los convierten en buenos candidatos para almacenar hidrógeno.

Uno de los materiales formados por carbono más populares es el grafeno, que tiene una sola capa de átomos y podría formar las paredes de los poros de esos futuros “contenedores” de hidrógeno.

“Producir carbonos porosos es sencillo y barato, los químicos saben cómo hacerlo a partir de carburos, que son compuestos formados por carbono y un elemento adicional que se puede eliminar”, comenta Julio Alfonso Alonso.

Por eso, en su opinión, el verdadero reto no está en producirlos ni en definir una estructura determinada o conseguir que los poros tengan un tamaño adecuado, todos ellos objetivos asequibles, sino en modificarlos mediante procesos físicos o químicos para aumentar su capacidad para almacenar hidrógeno hasta los niveles requeridos por la industria automovilística.

Catálisis química

El Grupo de Física de Nanoestructuras ha obtenido la calificación de Unidad de Investigación Consolidada por parte de la Junta de Castilla y León, un distintivo que reconoce a los grupos de investigación de la comunidad que cuentan con un mayor nivel de calidad y de producción científica.

Aunque el trabajo sobre almacenamiento de hidrógeno ocupa buena parte de su tiempo, los científicos que lo integran desarrollan otra potente línea de investigación en torno a la catálisis química.

“Un catalizador es un material que ayuda a aumentar la velocidad de una reacción sin participar en ella. Por ejemplo, si en la actualidad los coches que tenemos emiten pocos gases nocivos es porque ya cuentan con catalizadores muy buenos”, afirma el catedrático.

La gran novedad en este campo es que los investigadores trabajan con nanopartículas, es decir, esperan desarrollar catalizadores basados en materiales de un tamaño tan pequeño que se puedan medir en nanómetros (la milmillonésima parte del metro). Lo más interesante es que las propiedades cambian en esta escala.

“El oro es un material noble, no se oxida, pero si en lugar de tener un gran bloque, lo reducimos a unos pocos cientos de átomos, se convierte en reactivo y es un catalizador muy interesante”, pone como ejemplo el experto.

Las aplicaciones de estos estudios son incalculables porque casi todas las industrias químicas usan catalizadores y mejorarlos a escala nanométrica supone conseguir reacciones más rápidas y más eficientes.

Colaboraciones internacionales

Tanto en la línea de almacenamiento de hidrógeno como en la de catálisis química, este grupo de la UVa mantiene colaboraciones internacionales de primer nivel, en la actualidad, con científicos de Estados Unidos, Bélgica e Israel.

En España, mantienen estrechas relaciones con la Universidad de Burgos, el CSIC y la Universidad del País Vasco.

En muchas ocasiones, la colaboración se establece con grupos similares que realizan simulaciones teóricas por ordenador que resultan complementarias para el trabajo que están desarrollando. Otras veces requieren sus servicios grupos experimentales que trabajan en los laboratorios con materiales reales, para quienes resulta imprescindible apoyar sus resultados en la exactitud de los cálculos teóricos.

“Nosotros podemos decirles lo que sucede en cada átomo”, apunta el investigador. Para desarrollar estas investigaciones, el Grupo de Física de Nanoestructuras se apoya en la financiación de proyectos nacionales y regionales.

LA UVa DESCRIBE UN PROCESO SENCILLO PARA CREAR NANOMATERIALES DE INTERÉS FARMACÉUTICO

Fuente: Gabinete de Comunicación de la UVa

Las nanopartículas procedentes de metales nobles y de transición tienen cada vez mayor presencia en el campo de la biomedicina. Pueden ser empleadas como biosensores, en imagen molecular o en terapias específicas como las de hipertermia.

Entre ellas, en las nanopartículas de cobre se ha observado un potencial antiproliferativo que podría ser útil para crear nuevos fármacos contra el cáncer.

Una investigación de la Universidad de Valladolid (UVa) y el Instituto de Biología Experimental e Tecnológica de Portugal (iBET) ha encontrado el modo de desarrollar compuestos con nanopartículas de cobre a partir de una tecnología simple, aunque poco implantada a nivel industrial.

El trabajo se ha desarrollado en el marco de las investigaciones sobre síntesis de nanopartículas de óxidos metálicos desarrolladas por el Grupo de Procesos de Alta Presión de la UVa. Este equipo investigador trata de superar algunos de los problemas asociados a la creación de estos novedosos compuestos.

“Desarrollar aplicaciones para nanopartículas tiene una dificultad: tienden a aglomerarse por distintas fuerzas de cohesión de distinta naturaleza, como la electrostática”, explica Soraya Rodríguez Rojo, codirectora junto a María José Cocero de la tesis doctoral del investigador Víctor Martín que aborda la síntesis y formulación de nanopartículas metálicas y de óxidos metálicos.

Contra esta fuerza de atracción molecular, el equipo científico emplea técnicas de alta presión. Existe un momento intermedio en el que la materia no está en forma gaseosa, ni líquida. Es una situación denominada supercrítica en la que presenta propiedades intermedias. Esta situación la hace muy interesante para la ciencia.

El trabajo de investigación entre la UVa y organismos de investigación portugueses ha empleado dióxido de carbono (CO2) en estas condiciones supercríticas para mezclar lípidos y nanopartículas de cobre.

De forma convencional, se emplean disolventes orgánicos para producir sistemas que combinen estos dos materiales, con los consiguientes problemas medioambientales y riesgos para la salud.

Sin embargo, cuando el CO2 deja de ser líquido, pero todavía no es gas, se consigue mejorar la dispersión del metal en el lípido. El resultado fue unas micropartículas de lípido que llevaban insertas nanopartículas de cobre, del mismo modo que un cupcake lleva granitos de chocolate.

El resultado ha sido publicado en la revista The Journal of Supercritical Fluids.

Tecnología simple
Para la consecución de estos suportes de lípido con nanomateriales, el equipo ha empleado una tecnología “simple, pero poco implantada a nivel industrial”, indica Rodríguez Rojo. Se trata de un proceso denominado en inglés PGSS (Particles from Gas Saturated Solutions).

Además, aunque la técnica emplea CO2, un gas de efecto invernadero, es de poca cantidad y podría ser encauzado para su reutilización o captura, evitando sus emisiones a la atmósfera, explica la investigadora del Departamento de Ingeniería Química y Tecnología del Medio Ambiente.

Las nanopartículas de cobre son útiles en sectores industriales, pero también farmacéuticos. Esta versatilidad la hace muy interesante desde el punto de vista productivo.

Víctor Martín, Vanessa Gonçalves, Soraya Rodríguez Rojo, Daniela Nunes, Elvira Fortunato, Rodrigo Martins, María José Cocero, Catalina Duarte. ‘Production of copper loaded lipid microparticles by PGSS (particles form gas saturated solutions) process’. The Journal of Supercritical Fluids. 131 (2018) 124-129.

La UVa participa en un proyecto europeo que desarrollará una tecnología para la síntesis hidrotermal de nanopartículas

Fuente: Gabinete de Comunicación de la UVa

Un total de 17 socios forman parte del proyecto europeo del VII Programa Marco SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials), una iniciativa que busca desarrollar a escala industrial una tecnología con gran potencial en la producción de nanopartículas de gran tonelaje, denominada síntesis hidrotermal continua. En el proyecto, que cuenta con un presupuesto de 9’5 millones de euros, 6’8 aportados por la Comisión Europea, participa el Grupo de Procesos a Alta Presión de la Universidad de Valladolid (UVa), que llevará a cabo una labor fundamental.

Como detalla el profesor Juan García Serna, del Departamento de Ingeniería Química y Tecnología del Medio Ambiente, uno de los investigadores del Grupo de la UVa, en la comunidad internacional existe la necesidad de disponer de tecnologías que permitan aumentar la producción de nanopartículas, pero de una forma “verde” y sostenible, de bajo coste y al mismo tiempo capaz de obtener materiales de alta calidad.

La síntesis hidrotermal es una de ellas, y son varios los proyectos a nivel mundial que tratan de desarrollarla para aumentar la capacidad de producción. Japón, Estados Unidos y Corea son líderes en esta tecnología y grupos como el del profesor Tadafumi Adschiri (Universidad de Tohoku, Japón), que cuentan con sus propios dispositivos y procesos patentados, han invertido importantes recursos en esta línea.

En el caso de SHYMAN, el objetivo es llevar a escala industrial una tecnología patentada por la Universidad de Nottingham (Reino Unido), en concreto por el laboratorio del profesor Edward Lester, coordinador general del proyecto.

SHYMAN intenta desarrollar este tipo de tecnología de fluidos supercríticos para producir nanopartículas en Europa. “Es una tecnología compleja y el corazón del proceso, donde se suelen basar todas las patentes, es el tipo de reactor, el dispositivo donde se realiza la conversión. La tecnología del proyecto SHYMAN se llama de contraflujo, donde el fluido caliente y el frío entran enfrentados y por una especie de flotación se produce la mezcla y la reacción con gran eficiencia”, explica García Serna.

Esta tecnología, que ha sido ya testada en el laboratorio, se trasladará ahora a una planta de demostración que se está construyendo en las inmediaciones de la sede de la empresa Promethean Particles (la ‘start-up’ del Grupo de la Universidad de Nottingham), con capacidad para producir en torno a 100 toneladas al año.

El papel de la UVa en el proyecto
Dentro del consorcio del proyecto, algunos grupos aportarán sus conocimientos en torno a esta tecnología y otros se encargarán de buscar aplicaciones para estas nanopartículas. El Grupo de Procesos a Alta Presión de la UVa, el segundo socio con mayor peso dentro del proyecto tras la Universidad de Nottingham –recibirá un aporte de la Comisión Europea de 529.940 euros-, contribuirá con su ‘know-how’ en tres tareas diferentes.

La primera es el diseño de la planta de demostración, es decir, su ingeniería básica. “Hemos colaborado activamente en la elaboración de los balances de materia, los diagramas de flujo y la tecnología básica. También en los análisis de seguridad de la planta, la instrumentación (Diagrama de P&ID –Diagrama de Tuberías e Instrumentación) y control más genérico. Por otro lado, hemos colaborado en las bases fundamentales para operación en cuanto a recuperación del calor, para la sostenibilidad de la planta, para reducir su consumo energético y para la operabilidad con agua supercrítica”, apunta el investigador de la UVa.

La segunda parte en la que participa la UVa es la de simulación y modelizado del reactor. Para ello, emplean una tecnología denominada Dinámica Computacional de Fluidos (CFD, por sus siglas en inglés), un modelado matemático que permite realizar la simulación prácticamente en tres dimensiones. Utilizando los datos de los ensayos de laboratorio de la planta básica de la Universidad de Nottingham, se trata de representar cómo se comporta el fluido dentro del reactor y predecir y escalar el sistema a la planta industrial prevista.

Finalmente, el Grupo de Procesos a Alta Presión ha llevado a cabo una tarea socio-científica, con la organización de la Escuela de Verano SHYMAN entre el 28 de mayo y el 3 de junio del pasado año. La Escuela reunió a cerca de 40 estudiantes que realizan el doctorado en las distintas entidades participantes en el proyecto y también en otros países extranjeros. Durante el curso se impartieron temáticas relacionadas con la dinámica del proyecto y el último día se llevó a cabo una jornada de puertas abiertas para institutos, a la que asistieron alumnos y profesores de primero de Bachillerato de distintos centros de Valladolid. La Escuela se cerró con una conferencia a cargo de Eric Beckman, de la Universidad de Pittsburg (Estados Unidos), una de las máximas figuras en química e ingeniería verde del mundo.

Aplicaciones de las nanopartículas
Las nanopartículas que se producirán en el marco de SHYMAN son fundamentalmente dióxido de titanio y óxido de hierro, aunque también se sintetizará óxido de cerio y zirconio entre otros. El objetivo es que los socios industriales puedan incorporarlas a sus distintos productos y generar un valor añadido. Polímeros híbridos cargados con nanopartículas que puedan incorporar nuevas características a los materiales, como mayor o menor conductividad térmica, conductividad eléctrica o magnetismo; recubrimientos superficiales avanzados; nuevas prótesis biocompatibles, o componentes electrónicos novedosos serán algunas de las aplicaciones.

El Grupo de Procesos a Alta Presión, dirigido por María José Cocero, ha obtenido la calificación de Unidad de Investigación Consolidada por parte de la Junta de Castilla y León, un distintivo que reconoce a los grupos de investigación de la comunidad que cuentan con un mayor nivel de calidad y de producción científica.

Nanoparticulas-de-oxido-de-titanio-vistas-al-microscopio-electronico-de-barrido Reunion-de-los-18-meses-del-proyecto-SHYMAN-en-Praga-en-Noviembre-de-2013.jpg_116529064