Archivo de la etiqueta: células

UN NUEVO SENSOR ELECTROQUÍMICO ANALIZA EN LA PIEL DE LA UVA EL MOMENTO ÓPTIMO DE LA VENDIMIA

Fuente: Gabinete de Comunicación de la UVa

En 2017, la vendimia en la Ribera del Duero comenzó el ocho de septiembre y terminó el 20 de octubre. El año anterior, el periodo de recogida de la uva fue entre el 22 de septiembre y el siete de noviembre.

Solo en esta denominación de origen, en los últimos treinta años, ha habido variaciones de casi un mes en los comienzos y finales de las recolecciones. Ante tan amplio rango de fechas, ¿cuándo es el momento apropiado para la cosecha?

De forma general, los viticultores valoran principalmente la relación entre azúcares y ácidos en extractos de uva con métodos convencionales, con las previsiones meteorológicas y con sus experiencias previas.

La Universidad de Valladolid ha desarrollado ahora una nueva tecnología que puede ayudarles a tomar esta decisión, clave para la calidad de los caldos. Se trata de un sensor que detemina la fecha óptima a partir de información biomolecular existente en la piel de la uva.

La piel actúa como un monitor del estado de la uva. Previamente a la etapa de maduración, la uva cambia de color progresivamente. Esta evolución cromática le hace pasar del amarillo verdoso, al tinto pasando por tonalidades ocres. Es lo que se denomina el envero. El envero anuncia la proximidad de la madurez.

El nuevo método desarrollado por el grupo UVaSens, formado por especialistas en química, física e ingeniería, permite evidenciar los cambios que se producen en la piel durante la etapa de maduración.

“Desde el envero hasta el final de la maduración las células de la pulpa acumulan agua y azúcares, se expanden, y las células de la piel son afectadas por esta expansión, producen y acumulan gran cantidad de compuestos fenólicos y sus paredes comienzan a degradarse, lo que produce un ablandamiento de la uva”, explica Raquel Muñoz, integrante del equipo y profesora del Departamento de Bioquímica, Biología Molecular y Fisiología de la Universidad de Valladolid.

Los compuestos fenólicos son antioxidantes de interés para la industria alimentaria. La distribución de estos fenoles en la piel determina el grado de madurez y en última instancia la calidad del vino.

Precisamente, el sensor detecta estos cambios bioquímicos y determina la fecha idónea para la vendimia. Los resultados han sido publicados en la revista científica Food Research International.

Tres variedades
El estudio científico se realizó con muestras de tres variedades autóctonas de España: Mencía, Prieto Picudo y Juan García; y con la colaboración de la Estación Enológica de Castilla y León, el Instituto Tecnológico Agrario de Castilla y León (Itacyl) y el departamento de I+D de la Bodega Cooperativa de Cigales.

Estos centros proporcionaron las muestras para el análisis durante seis semanas a lo largo de la etapa de maduración y llevaron a cabo análisis químicos que sirvieron de control.

El equipo científico calibró el sistema con tres tipos de uva dado que cada variedad muestra características propias de maduración.

Para el análisis de los cambios, se empleó un sistema de electrodos sensibles a las variaciones electroquímicas en la piel de la uva. El dispositivo calibraba los procesos de reducción-oxidación, una reacción química en la que tienen un papel esencial los compuestos fenólicos por sus propiedades antioxidantes.

En el experimento, los sensores unidos a la piel mostraron buenas correlaciones respecto al momento idóneo de madurez de la uva.

“La nueva metodología está disponible para la industria, aunque nos gustaría realizar más comprobaciones en otras variedades para mejorar el calibrado”, matiza María Luz Rodríguez Méndez, catedrática del Departamento de Química Inorgánica y coordinadora del grupo UVaSens.

Teniendo en cuenta que en cada tipo de uva los fenoles de la piel tienen un comportamiento diferenciado, el sistema se adapta a estas variaciones.

Lenguas y narices electrónicas
El grupo UVaSens está especializado en el análisis de alimentos por medio de redes de sensores para analizar muestras complejas. El punto de partida, no obstante, fue el estudio de aromas, que no son otra cosa que mezclas complejas de gases.

“Los olores suelen ser generalmente complejos, en el del café, por ejemplo, actúan hasta 500 compuestos”, resume Rodríguez Méndez.

Estas redes de sensores, combinadas con un software de tratamiento de datos (denominadas narices electrónicas), permite discriminar muestras con diferentes olores, por ejemplo, vinos con diferentes características.

A partir de esta experiencia, el grupo comenzó a desarrollar lenguas electrónicas, que son redes de sensores que analizan líquidos y facilitan a la industria alimentaria la determinación de sabores.

“Es una demanda habitual en procesos de producción de alimentos”, indica la especialista. Con las narices y lenguas electrónicas se pueden evitar las complicaciones que pueda tener una persona en su aparato olfativo o gustativo, como por ejemplo, resfriados inoportunos o evitar calificaciones derivadas de gustos personales.

BIOFORGE, EN UN PROYECTO EUROPEO QUE DESARROLLA NUEVOS HIDROGELES PARA APLICACIONES BIOMÉDICAS

Fuente: Gabinete de Comunicación de la UVa

El grupo de investigación Bioforge de la Universidad de Valladolid, Premio de Investigación Consejo Social 2012, participa en un proyecto europeo del programa Horizonte 2020 denominado Biogel junto a otros científicos de Alemania, Países Bajos, Austria, Grecia y España.

El trabajo que desarrollan se centra en la ingeniería de hidrogeles sensibles para diagnósticos y terapias en el ámbito biomédico

Los hidrogeles son materiales con alto contenido en agua y formados por entramados moleculares que dejan huecos que pueden ser rellenados por agua. Esto le confiere unas propiedades de gran elasticidad y resistencia, siendo especialmente adecuados para algunos usos, como el biomédico. 

"Nuestra tarea consiste en desarrollar nuevos materiales para formar estos hidrogeles, es decir, la parte que no es agua, que debe ser funcional y tener unas propiedades determinadas para que pueda interactuar con células o fármacos, por ejemplo”, explica José Carlos Rodríguez Cabello, director del grupo Bioforge.

De hecho, el sector biomédico es el campo con mayores aplicaciones, puesto que de algún modo “todos los tejidos biológicos son similares a los hidrogeles”, asegura. 

En este sentido, el proyecto europeo Biogel trabaja sobre conceptos básicos para entender mejor sus propiedades físicas, químicas y biológicas, es decir, sobre cómo funcionan molecularmente. Sobre estos conocimientos, servirá también para fabricar nuevos hidrogeles en áreas donde existen problemas aún no resueltos tecnológicamente.

Para ello, “intentamos comprender cómo funcionan los hidrogeles biológicos en las células y fuera de ellas”. 

trata de “buscar inspiración” en los tejidos biológicos y aplicar esos conocimientos para desarrollar nuevos hidrogeles sintéticos en áreas como la ingeniería de tejidos o medicina regenerativa, para la dosificación de fármacos y otras aplicaciones relacionadas con la nanomedicina, es decir, la medicina a muy pequeña escala.

Aparte de la labor investigadora, el proyecto tiene un importante componente formativo, ya que se incluye dentro de las acciones Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) de la Comisión Europea, cuyo objetivo principal es la formación de jóvenes científicos que van a realizar su tesis doctoral en campos estratégicos del conocimiento. 

Con un presupuesto global de más de 3,5 millones de euros, de los que la UVa recibe casi 250.000, la idea es aprovechar las sinergias de grupos de investigación muy potentes que se unen para formar el consorcio internacional. De esta forma, los futuros doctores pueden moverse por varios laboratorios y obtener una formación multidisciplinar.

En este caso, se contratan 14 jóvenes investigadores que se reparten entre los socios del proyecto –al menos seis de ellos pasarán por Valladolid- y realizan reuniones periódicas entre sí para compartir sus avances.

“Nuestros estudiantes están continuamente viajando y, en este caso, aparte de la dimensión europea del proyecto, también tienen la posibilidad de realizar estancias en Estados Unidos y Japón”, destaca José Carlos Rodríguez Cabello.

Aplicaciones prácticas
El proyecto arrancó hace poco más de un año y tiene prevista una duración de cuatro, de manera que se prolongará hasta finales de 2018. Dentro del consorcio se incluyen empresas, como la vallisoletana Technical Proteins Nanobiotechnology, ya que uno de los objetivos es que la investigación no pierda de vista la transferencia de resultados, de manera que el trabajo se vea reflejado en aplicaciones prácticas para el mercado.

En el campo de las terapias celulares, es decir, los tratamientos que utilizan las células como agente terapéutico, los hidrogeles pueden servir para “ayudar a las células a encontrarse”. Un ejemplo puede ser la regeneración de tejidos cardiacos, cartílagos, nervios o vasos sanguíneos.

“La terapia celular siempre requiere un hidrogel, con una actividad biológica controlada y mínimamente invasivo”, apunta el experto, ya que la labor de este elemento es servir de vehículo “para que las células lleguen donde deben y no se vayan”.

Mimetización con el entorno
Para ello, los hidrogeles se tienen que mimetizar con su entorno y una estrategia para conseguirlo es que estén formados por proteínas sintéticas. Tras estudiar cómo funcionan los tejidos biológicos, los investigadores se proponen realizar “versiones simplificadas de las proteínas naturales” que puedan tener justo las propiedades que se buscan. 

En eso consistirán los materiales avanzados que formarán los nuevos hidrogeles en desarrollo y que serán producidos por técnicas biotecnológicas. “Pensamos en una composición y tratamos de fabricar el ADN sintético que produciría ese compuesto en un ser vivo”, apunta el coordinador del grupo Bioforge. “Es una manera de tener materiales sofisticados a un coste reducido y en un tiempo récord”, agrega.

Aunque en la actualidad ya existen diversos hidrogeles destinados a aplicaciones biomédicas, generalmente están constituidos por componentes muy básicos, más orientados, por ejemplo, al transporte de fármacos, y que fallan en aplicaciones más avanzadas como las que se propone este proyecto europeo.